Robomaster S1 — Sandbox Escape

Took some time, but now we have finally root access to the Robomaster S1. The following
instructions are for Windows 10 users, but it should also work for any other OS.

What you need

Android SDK Platform-Tools (https://developer.android.com/studio/releases/platform-tools)
Micro USB Cable
Latest Robomaster S1 App & Firmware

Step by step instructions

1)

2)

4)

5)

Unzip the Android SDK Platform-Tools. Any directory will do for now. Remember the path,
we will need it later.

Use the Intelligent Controller Micro USB Port (8) and connect the S1 to your computer:

Please be aware that no other Android device should be connected via USB!

Start the Robomaster S1 application. Go to the Lab, create a new Python application and
paste the following code:

def root me (module) :
__import =rm log. dict [' builtins '][' import ']
return import (module,globals(),locals (), [],0)

builtins=root me('builtins')
subprocess=root me ('subprocess"')

proc=subprocess.Popen('/system/bin/adb en.sh',shell=True, executable="
/system/bin/sh', stdout=subprocess.PIPE, stderr=subprocess.PIPE)

Run the Code within the S1 Lab. If you followed the steps correctly there should be no
compilation errors. The Console will show: Execution Complete

Don’t close the S1 Application! Open an Explorer window and go to the directory which holds
the earlier extracted Android Platform Tools. Open a PowerShell in this directory (Shift +
Right-Click)

6) Runthe ADP command as follows: . \adb.exe devices. You should see something like
this:

2 Windows PowerShell

PS E:\Downloads\platform-tools> .\adb.exe devices
List of devices attached
01234567 89ABCDEF device

PS E:\Downloads\platform-tools>

7) Execute: .\adb.exe shell
Ladies and Gentlemen, welcome to the Matrix:

2 Windows PowerShell

PS E:‘\Downloads\platform-tools> .\adb.exe devices
List of devices attached
01234567 89ABCDEF device

PS E:\Downloads\platform-tools> .\adb.exe shell
root@xwb07_dz_ap0002_vd:/ #

Explanation

In Python, the module namespace is based on a dictionary/hash table implementation. Using the
import statement we are able to import other modules. Specifically calling the built-in function
[import]for module import.

In the CPython implementation the built-in functions are located in the built-in namespace and are
accessible fromthe [builtins | property of the module namespace. By default, this property
is associated withthe [dict] property of the standard library [ouiltins] module.

Sandbox escape

DJI modifiedthe [builtins] attribute &the[import]function, removed the built-in
functions and set a whitelist for module import. However, the module in the whitelist (whose
namespace is not modified) is still associated with the [builtins] module. Safe module names are:

'event client'
'rm ctrl'

'rm define'
'rm block description'
'rm log'
'tools'

'time'

'math’
'random'
'threading'
'traceback'
'tracemalloc'

[rm log]is obviously the responsible module for log reading and writing - and has at least read and
write permissions to the log directory. We can use this module as a springboard to access the
Robomaster S1.

Analyzing the system directory shows:

e That the system is Android 4.4, the firmware is protected by selinux and is read-only

e The SD card directory is writeable

e The Python subsystem starts up and runs with root privileges

e The firmware determines whether the debug mode can be entered via /proc/cmdline
using a whitelist

But, but, but ... :) [adb_en. sh] can directly enable the adb service and open the serial port:

subprocess=root me ('subprocess')

proc=subprocess.Popen('/system/bin/adb en.sh', shell=True, execut
able="'/system/bin/sh', stdout=subprocess.PIPE, stderr=subprocess.
PIPE)

At this point we can use the Python standard library for the Robomaster S1 and access the underlying
hardware. Nice :)

